Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Nobuo Okabe,* Yasunori
 Muranishi and Toshihiko Aziyama

Faculty of Pharmaceutical Sciences, Kinki University, Kowakae 3-4-1, Higashiosaka, Osaka 577-8502, Japan

Correspondence e-mail:
okabe@phar.kindai.ac.jp

Key indicators

Single-crystal X-ray study
$T=296 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
R factor $=0.026$
$w R$ factor $=0.071$
Data-to-parameter ratio $=16.6$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2003 International Union of Crystallography Printed in Great Britain - all rights reserved

(1,2-Benzenediolato- $\left.\kappa^{2} O, O^{\prime}\right)(1,10-$ phenanthroline $-\kappa^{2} N, N^{\prime}$)palladium(II) dihydrate

In the mononuclear catecholate complex, $\left[\operatorname{Pd}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{O}_{2}\right)\right.$ $\left.\left(\mathrm{C}_{12} \mathrm{H}_{8} \mathrm{~N}_{2}\right)\right] \cdot 2 \mathrm{H}_{2} \mathrm{O}$, the $\mathrm{Pd}^{\text {II }}$ has a distorted cis square-planar four-coordinate geometry. It is bonded to two O atoms of a bidentate catecholate dianion and two N atoms of the bidentate phenanthroline. The overall conformation of the complex including catechol and phenanthroline rings is almost planar.

Comment

Numerous transition metal catecholates have been studied extensively in the solid state and in solution because of their unique redox characteristics (Pierpont, 2001; Sheriff et al., 2003; Hamilton et al., 1966). Platinum(II) catecholates have been reported to have anticancer activity and are used for metalloantigens (Pal et al., 2001; Rauth et al., 2001; Lesley et al., 1999). $\quad \mathrm{Pd}^{\mathrm{II}}$ complexes of bis(2-acetylpyridine-3-hexamethyleneiminyl-thiosemicarbazonate) (Kovala-Demertzi et al., 2002), dithiocarbamates and amines (Faraglia et al., 2001) and 5,7-dihydro-7-oxo-5-methyl[1,2,4]triazolopyrimidine (Akdi et al., 2002) exhibit antitumor activity. In the present study, we report the preparation and crystal structure of the title compound, (I), a catecholate complex of $\mathrm{Pd}^{\mathrm{II}}$ with 1,10-phenanthroline. To the best of our knowledge, this is the first structural report of a palladium(II) catecholate complex.

(I)

In the crystal structure of (I), the $\mathrm{Pd}^{\mathrm{II}}$ has a distorted cis square-planar four-coordination geometry (Fig. 1), and is bonded to two O atoms of a bidentate catecholate dianion and two N atoms of the bidentate 1,10-phenanthroline. The overall conformation of the complex (I) is almost planar with a dihedral angle of $11.46(8)^{\circ}$ between the catecholate and $1,10-$ phenanthroline ligands. The central $\mathrm{Pd}^{\mathrm{II}}$ forms five-membered chelate rings with the ligand atoms. The bond lengths and angles of (I) may be compared to those reported for the complexes of $\mathrm{Pd}^{\mathrm{II}}$ with ethylenediamine (en) and dicarboxylate ligands of the type $[\operatorname{Pd}(\mathrm{en}) M$], where $M=$ methylmalonato,

Figure 1
ORTEPII (Johnson, 1976) drawing of (I), with the atomic labelling scheme. Displacement ellipsoids are drawn at the 50% probability level.

Figure 2
A stereoview of the molecular packing of (I). Hydrogen bonds are indicated by thin lines.
and $[\operatorname{Pd}(\mathrm{en}) C]$, where $C=1,1$-cyclobutanedicarboxylato (Tercero et al., 2003). In these complexes, $\mathrm{Pd}^{\mathrm{II}}$ has a cis squareplanar coordination geometry with two O atoms of the dicarboxylate ligand and two N atoms of ethylenediamine, as in (I). The $\mathrm{Pd}-\mathrm{O}$ and $\mathrm{Pd}-\mathrm{N}$ bond lengths of (I) (Table 1) are slightly shorter than those of $[\operatorname{Pd}(\mathrm{en}) M]$ and $[\operatorname{Pd}(\mathrm{en}) C]$, in which the bond lengths range from 1.995 (10) to 2.027 (10) \AA for $\mathrm{Pd}-\mathrm{O}$ and 2.009 (11) to $2.030(2) \AA$ for $\mathrm{Pd}-\mathrm{N}$. This means that the coordinate bonds of (I) are somewhat stronger than those of $[\mathrm{Pd}(\mathrm{en}) M]$ and $[\mathrm{Pd}(\mathrm{en}) C]$. Furthermore, the O -$\mathrm{Pd}-\mathrm{O}$ and $\mathrm{N}-\mathrm{Pd}-\mathrm{N}$ angles of (I) are smaller than those of $[\operatorname{Pd}(\mathrm{en}) M]$ and $[\mathrm{Pd}(\mathrm{en}) C]$, in which the $\mathrm{O}-\mathrm{Pd}-\mathrm{O}$ angles lie in the range 89.51 (17) to $92.69(7)^{\circ}$ and $\mathrm{N}-\mathrm{Pd}-\mathrm{N}$ angles lie in the range 84.09 (18) to $84.15(8)^{\circ}$. This may be attributed to the different intramolecular mobility of the O and N atoms in the ligand molecules. The mobility of the O atoms of catecholate and N atoms of 1,10-phenanthroline ligands are smaller than that of the O atoms of methylmalonate, O atoms of 1,1-cyclobutanedicarboxylate and N atoms of ethylenediamine ligands.

The crystal packing of (I) is shown in Fig. 2. The 1,10phenanthroline ligand is stacked along the c axis with the symmetry-related catecholate ring at $(-x, 2-y, 1-z)$, and with another 1,10-phenanthroline ligand related by the symmetry operation $(-x, 2-y, 2-z)$; their centroids are separated by 3.710 (2) and 4.083 (2) \AA, respectively. $\mathrm{O}-$ $\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds involving the water molecules and catecholate O atoms (Table 2) link the complexes to form chains along the a axis.

Experimental

Dark red plate crystals of (I) were obtained by slow evaporation of a dimethylformamide solution of a mixture of catechol, 1,10-phenanthroline and $\mathrm{Pd}\left(\mathrm{CH}_{3} \mathrm{COO}\right)_{2}$ (molar ratio 1:1:1) at room temperature.

Crystal data

$\left[\operatorname{Pd}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{O}_{2}\right)\left(\mathrm{C}_{12} \mathrm{H}_{8} \mathrm{~N}_{2}\right)\right] \cdot 2 \mathrm{H}_{2} \mathrm{O} \quad D_{x}=1.746 \mathrm{Mg} \mathrm{m}^{-3}$
$M_{r}=430.75$
Monoclinic, $P 2_{1} / n$
$a=9.248(2) \AA$ 。
$b=16.462(2) \AA$
$c=10.802(1) \AA$
$\beta=94.70(1)^{\circ}$
$V=1639.0(4) \AA^{3}$
$Z=4$

> Mo K α radiation
> Cell parameters from 25
> \quad reflections
> $\theta=14.7-15.0^{\circ}$
> $\mu=1.16 \mathrm{~mm}^{-1}$
> $T=296.2 \mathrm{~K}$
> Block, dark red
> $0.50 \times 0.20 \times 0.20 \mathrm{~mm}$

Data collection

Rigaku AFC-5R diffractometer
$\omega-2 \theta$ scans
Absorption correction: ψ scan
\quad (North et al., 1968)
$T_{\min }=0.757, T_{\max }=0.793$
4127 measured reflections
3760 independent reflections
3021 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.042$
$\theta_{\max }=27.5^{\circ}$
$h=0 \rightarrow 12$
$k=0 \rightarrow 21$
$l=-14 \rightarrow 13$
3 standard reflections
\quad every 150 reflections
intensity decay: 0.7%

Refinement

Refinement on F^{2}
H -atom parameters constrained
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.026$
$w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.034 P)^{2}\right]$
where $P=\left(F_{o}^{2}+2 F_{c}{ }^{2}\right) / 3$
$w R\left(F^{2}\right)=0.071$
$(\Delta / \sigma)_{\max }=0.003$
$S=1.13$
$\Delta \rho_{\text {max }}=0.37 \mathrm{e}^{-3}$
$\Delta \rho_{\min }=-0.66 \mathrm{e}^{-3}$
226 parameters

Table 1

Selected geometric parameters $\left(\AA^{\circ},{ }^{\circ}\right)$.

Pd1-O1	$1.989(2)$	Pd1-N2	$2.003(2)$
Pd1-O2	$1.981(2)$	$\mathrm{O} 1-\mathrm{C} 13$	$1.365(3)$
Pd1-N1	$2.019(2)$	$\mathrm{O} 2-\mathrm{C} 18$	$1.344(3)$
O1-Pd1-O2	$85.09(7)$	$\mathrm{O} 2-\mathrm{Pd} 1-\mathrm{N} 1$	$176.80(8)$
$\mathrm{O} 1-\mathrm{Pd} 1-\mathrm{N} 1$	$97.51(7)$	$\mathrm{O} 2-\mathrm{Pd} 1-\mathrm{N} 2$	$95.72(8)$
$\mathrm{O} 1-\mathrm{Pd} 1-\mathrm{N} 2$	$179.19(8)$	$\mathrm{N} 1-\mathrm{Pd} 1-\mathrm{N} 2$	$81.69(8)$

Table 2
Hydrogen-bonding geometry ($\AA \mathrm{A}^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
O3-H3AㅇO2	0.77	2.07	$2.826(3)$	166
O3-H3B $\cdots \mathrm{O} 1^{\mathrm{i}}$	0.76	2.04	$2.772(3)$	163
O4-H4B O^{ii}	0.76	2.15	$2.907(3)$	174
O4-H4A $\cdots \mathrm{O} 3$	0.76	2.07	$2.823(3)$	176

Symmetry codes: (i) $-x, 2-y, 1-z$; (ii) $1+x, y, z$.

The H atoms of the water molecules were located in a difference Fourier map but their parameters were not refined. The C-bound H atoms were placed at ideal positions $(\mathrm{C}-\mathrm{H}=0.93 \AA)$ and allowed to ride on the attached atom. For all H atoms, the isotropic displacement parameter was set equal to $1.2 U_{\text {eq }}$ (parent atom).

Data collection: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1992); cell refinement: MSC/AFC Diffractometer Control Software; data reduction: TEXSAN (Molecular Structure Corporation \& Rigaku Corporation, 2000); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: TEXSAN.

References

Akdi, K., Vilaplana, R. A., Kamah, S., Navarro, J. A. R., Salas, J. M. \& González-Vílchez, F. (2002). J. Inorg. Biochem. 90, 51-60.
Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. \& Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.

Faraglia, G., Fregona, D., Sitran, S., Giovagnini, L., Marzano, C., Baccichetti, F., Casellato, U. \& Graziani, R. (2001). J. Inorg. Biochem. 83, 31-40.

Hamilton, G. A., Hanifin, J. W. Jr. \& Friedman, J. P. (1966). J. Am. Chem. Soc. 88, 5269-5272.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Kovala-Demertzi, D., Demertzis, M. A., Miller, J. R., Frampton, C. S., Jasinski, J. P. \& West, D. X. (2002). J. Inorg. Biochem. 92, 137-140.

Lesley, M. J. G., Clegg, W., Marder, T. B., Norman, N. C., Orpen, A. G., Scott, A. J. \& Starbuck, J. (1999). Acta Cryst. C55, 1272-1275.

Molecular Structure Corporation (1992). MSC/AFC Diffractometer Control Software. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.
Molecular Structure Corporation \& Rigaku Corporation (2000). TEXSAN. Version 1.11. MSC, 9009 New Trails Drive, The Woodlands, TX 77381-5209, USA, and Rigaku Corporation, 309-12 Akishima, Tokyo, Japan.
North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351359.

Pal, S., Das, D., Sinha, C. \& Kennard, C. H. L. (2001). Inorg. Chim. Acta, 313, 21-29.
Pierpont, C. G. (2001). Coord. Chem. Rev. 216, 99-125.
Rauth, G. K., Pal, S., Das, D., Sinha, C., Slawin, A. M. Z. \& Woollins, J. D. (2001). Polyhedron, 20, 363-372.

Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
Sheriff, T. S., Carr, P. \& Piggott, B. (2003). Inorg. Chim. Acta. 348, 115-122.
Tercero, J. M., Matilla, A., Sanjuán, M. A., Moreno, C. F., Martín, J. D. \& Walmsley, J. A. (2003). Inorg. Chim. Acta, 342, 77-87.

